
2000-01-1564

Artificial Neural Network Based Energy Storage System
Modeling for Hybrid Electric Vehicles

Sanjay R. Bhatikar and Roop L. Mahajan
Mechanical Engineering Dept.

 University of Colorado at Boulder

Keith Wipke and Valerie Johnson
National Renewable Energy Lab (NREL)

Copyright © 2000 Society of Automotive Engineers, Inc.

ABSTRACT

The modeling of the energy storage system (ESS) of a
Hybrid Electric Vehicle (HEV) poses a considerable
challenge. The problem is not amenable to physical
modeling without simplifying assumptions that
compromise the accuracy of such models. An alternative
is to build conventional empirical models. Such models,
however, are time-consuming to build and are data-
intensive. In this paper, we demonstrate the application
of an artificial neural network (ANN) to modeling the
ESS. The model maps the system’s state-of-charge
(SOC) and the vehicle’s power requirement to the bus
voltage and current. We show that ANN models can
accurately capture the complex, non-linear correlations
accurately. Further, we propose and deploy our new
technique, Smart Select, for designing ANN training
data. The underlying philosophy of Smart Select is to
design the training data set such that it is uniformly
distributed over the entire range of an appropriate ANN
output variable, which is typically the variable that is
most difficult to model. In this case, we selected training
data that were uniformly distributed over the current
range. We show that smart-select is economical in
comparison with conventional techniques for selection of
training data. Using this technique and our in-house
ANN software (the CUANN), we developed an artificial
neural network model (inputs=2, hidden neurons=3,
outputs=2) utilizing only 1583 of the available 32,254
points. When validated on the remaining points, its
predictive accuracy, measured by R-squared error, was
0.9978. Next, we describe the integration of the ANN
model of the ESS into the MATLAB-SIMULINK
environment of NREL’s vehicle simulation software,
ADVISOR. This yields a simpler implementation of the
ESS module in ADVISOR and does away with certain
tenuous assumptions in the original implementation.

Lastly, we also show how a dramatic reduction in the
size of the training data set may be obtained by applying
the model modifier approach developed by our
research group at the University of Colorado at Boulder.

INTRODUCTION

A growing dependence on foreign oil, along with a
heightened concern over the environmental impact of
personal transportation, has led the US government to
investigate and sponsor research into advanced
transportation concepts. One of these future
technologies is the hybrid electric vehicle (HEV),
typically featuring both an internal combustion engine
and an electric motor, with the goal of producing lower
emissions while obtaining superior fuel economy. Figure
1 lists the typical components found in an HEV.

The Department of Energy’s National Renewable Energy
Laboratory (NREL) has developed a HEV simulator,
called the ADvanced VehIcle SimulatOR (ADVISOR).
This simulator facilitates the optimization of HEV
configurations with different subsystems, for best fuel
economy and emission level. ADVISOR requires models
of the individual components of a HEV such as the
propulsion unit and the energy storage unit.

One way to develop models of HEV components is
through rigorous analytical procedure. This is typically
time-consuming and the simplifying assumptions
required to make the analysis tractable impair the value
of such models. An alternative is to employ conventional
empirical methods, which are variations of the classical
regression theme. These models are unwieldy and are
usually only suitable for low-end non-linearities. In this
paper, we present artificial neural network modeling as a
practical alternative to analytical and empirical methods
that is accurate and easy to use.

THE ARTIFICIAL NEURAL NETWORK

An Artificial Neural Networks (ANN) is a massively
parallel, highly interconnected system of computational
nodes or neurons (Figure 3). The neurons are organized
into layers. Typically, there is an input layer into which
the input vector (independent variables) is fed in, an
output layer that produces the output vector (dependent
variables), and one or more layers in between. A typical
ANN is shown in Figure 3. It has an input layer, a hidden
layer and an output layer. There are connections going
from a neuron in a layer to all neurons in the next layer.
There are no connections between neurons of the same
layer. Each connection is associated with a weight. Such
an ANN can be trained to learn an input-output mapping
by showing it examples of the mapping. During the
training procedure, the weights of the ANN are adjusted
such that the ANN converges to the output of the training
data.

Consider the processing performed by an ANN. An input
vector is presented at the input layer and run through the
ANN to obtain the output vector. The output of any layer
becomes the input to the following layer. The following
equation relates the output of a layer to its input from the
preceding layer and the interconnection weights
between the two layers:

Here, is the output of the i th neuron in the l th layer,
 is the weight of the connection from the j th neuron in
the (l-1) th layer to the i th neuron in the l th layer, is
the bias connected to the i th neuron in the l th layer and
Nl-1 is the number of neurons in the (l-1) th layer. F is the
activation function, which may be thought of as providing
a non-linear gain for the artificial neuron. It is typically a
sigmoid function (Figure 4) and bounds the output from
any neuron in the network.

To train an ANN for developing an input-output mapping,
data are required which are representative of the
mapping. The first step of training is the forward pass,
which consists of calculating the output vector by
running the input vector through the ANN. This is
followed by a backward pass where the error derivatives
are calculated for each weight. The error derivatives for
a weight are summed until all the data points have been
run through the network once. This constitutes an epoch.
The weights are updated after each epoch such that the
ANN error decreases. Refer to references 2 and 3 for
further details.

For this project, we used our in-house ANN software, the
‘Colorado University Artificial Neural Network’
(CUANN�).

THE ADVANCED VEHICLE SIMULATOR (ADVISOR)

ADVISOR is software created in MATLAB for the
simulation of hybrid electric vehicles (HEVs). ADVISOR
allows an HEV to be configured from a selection of
components, including several energy storage units,
internal combustion engines and drivetrain systems. A
graphic user interface, as shown in Figure 5, allows the
user to select individual components and configure the
HEV.

The simulation routines are implemented in the
SIMULINK toolkit of MATLAB . SIMULINK is a
graphical programming language. Figure 6 shows the
implementation of a series HEV in SIMULINK .

ADVISOR simulates a drive cycle, which consists of a
temporal required-speed profile. A drive-cycle
constitutes the basis of a simulation. From the
operational characteristics of the various HEV
components, the vehicle configured by the user attempts
to meet the speed profile of the selected drive cycle.
Various performance parameters such as emissions,
fuel consumption and fuel efficiency are computed.

In this paper, we demonstrate the utility of an artificial
neural network as a fast and accurate modeling tool for
HEV components. As the performance of ADVISOR
depends upon the quality of the component models, the
artificial neural network as a modeling tool fills a critical
need. Moreover, the ANN can be seamlessly integrated
with the ADVISOR system.

THE ENERGY STORAGE SYSTEM (ESS)

The ESS is the source of electrical power in an HEV. It
comprises a bank of batteries. Batteries store and
deliver electrical energy chemically by initiating and
reversing chemical reactions respectively. Although a
battery is a simple electrical energy storage device that
delivers and accepts energy, the highly non-linear nature
of its electrochemical processes makes it difficult to
model. It is therefore an excellent candidate for
validating the ANN as a modeling tool.

Figure 7 represents the general scheme of the ESS
model as required in ADVISOR. The ESS accepts a
power request (Pr), and depending on the state-of-
charge (SOC) of the battery pack, returns the bus
voltage (V) and current (I). The ESS output power is
simply the product of the bus voltage and current.

Artificial Neural Network models were developed to
implement this scheme.

ARTIFICIAL NEURAL NETWORK MODELING

Experimental data for development of ANN models were
collected from a lead-acid battery, with an ‘ABC-150’
experimental test rig (See Figure 8). Five different drive
cycles were simulated by means of this test-rig. Data

)(
1

1

1
�

−

=

− +=
lN

j

l
i

l
j

l
ij

l
i bYwFY

l
iY

l
ijw

l
ib

)1(
1

ue
F −+

=

from these five drive cycles were used to train ANNs.
The complete data set comprised 32,254 examples.

PERFORMANCE MEASURES

In order to gauge the performance of an ANN model on
a data set, two measures of error were adopted. These
are the average mean squared error (MSE) and the
correlation coefficient, R2. They are defined as follows

Here,
 N is the total number of data points,
 ti is the target output,
 tm is the mean of the target output values, and
 yi is the model’s predicted output.

Both these measures have drawbacks and are not good
under all situations. However, referring to them both
gives a good idea of the ANN model’s performance.

ARTIFICIAL NEURAL NETWORK MODEL – I

ANNs were developed with training data sampled at
random from the available data. This is a simple and
unsophisticated approach. The training data set
comprised 6000 points (1200 from each of five driving
cycles). ANNs were trained and then validated on the
entire data set of 32,254 points.

Figures 9 and 10 represent the validation performance of
the ANN model. Figure 9 is a plot of the target voltage
versus the ANN’s prediction. The MSE is close to zero
and the R-squared error is nearly 1. Figure 10 is a plot of
the target current versus the ANN’s prediction. The MSE
is 39.52 and the R-squared error is 0.9850. It was
observed that the performance dropped sharply for
extreme values of current. This behavior was
characteristic of all ANN models developed with data
derived by random sampling from the drive cycles.

It was reasoned that this discrepancy arose due to the
uneven distribution of training data with respect to
current. This is clearly evident from Figure 11, which is
a histogram showing distribution of the experimental
data vis-a-vis current. More than 70% of the data are
confined to less than 30% of the current space.

It was therefore decided to sample training data for an
even distribution over the current space. This forms the
basis of our smart select technique, described in the
next section.

SMART SELECT

The underlying philosophy of the Smart Select technique
is to design training data set such that the data are
uniformly distributed over the entire range of an
appropriate output variable. This variable is the one that
is most difficult to model by the ANN. Conventional
Design of Experiments (DOE) mandates an even
distribution of training data over input (independent)
variables. Such a full-factorial DOE scheme is data-
intensive. It is subject to the ‘curse of dimensionality’
whereby the size of the training data set increases
exponentially with the resolution of the independent
variables. A partial-factorial DOE attenuates the problem
of data-explosion. However, even with partial factorial
DOE, the time required to select training data from an
available data set is prohibitively large. This problem is
what Smart Select solves. By applying Smart Select, the
data are sampled so that the training data have an even
distribution vis-à-vis one output (dependent) variable
only. The variable selected is the output variable that is
more intractable than the others.

For the ANN model of the ESS, the intractable output
variable was the current. Accordingly, the training data
set was designed with the objective of ensuring an even
distribution of data with respect to the current.

ARTIFICIAL NEURAL NETWORK MODEL - II

ANNs were developed with data selected by the Smart
Select technique. Smart Select was implemented by a
C++ program (see reference 1). 1583 data points were
sampled from the driving cycles. The points were
sampled in approximately equal measure from each
driving cycle. Refer to Figure 12. Clearly, the training
data are evenly distributed with respect to current.

An ANN model was developed with these 1583 points.
The best ANN configuration comprised 1 hidden layer
with 4 neurons. Figure 13 shows the validation
performance of the ANN for current. The MSE is 5.78
and the R-squared error is 0.9978. This ANN model met
NREL’s performance targets: R-squared error ≥ 0.99
and MSE less than that of the original algorithm (MSE <
17.872)

INTEGRATION OF ANN INTO ADVISOR

The ANN described in the previous section was
incorporated into ADVISOR. ANN models were created
in MATLAB , using the Neural Network Toolbox. A back-
propagation neural network is created in MATLAB

using the “net” command. The SIMULINK block
diagram of an ANN is created using the “gensim”
command.

Pilot tests demonstrated the superior learning capability
of the CUANN as compared to ANNs implemented in
MATLAB . Therefore, ANN models were developed
using the CUANN software and the weights were

�

�

�

=

=

=

−

−
−=

−=

N

i
mi

N

i
ii

N

i
ii

tt

yt
R

yt
N

MSE

1

2

1

2

2

1

2

)(

)(
1

)(1

transferred to identical ANNs created in MATLAB . See
Appendix A for details.

MODEL MODIFIER TECHNIQUE

An important aspect of this investigation was to test the
efficacy of our model modifier approach for economy of
training data. This approach consists of developing a
physical ANN model trained on a first-principle physical
model, and then updating this model by a ‘shot-of-reality’
from experimental data. The physical ANN model is
trained with data generated by simulation of the physical
model for combinations of input parameters dictated by a
statistical design of experiments (DOE). Its accuracy is
limited as the physical model is impaired by simplifying
assumptions. By introducing experimental data a shot-
of-reality is delivered which compensates for this
impairment. At the same time, fewer experimental data
are required as the physical ANN model captures the
essential physical underpinnings of the model. The
implementation of this concept comprises two stages.
The first stage is the physical ANN model. The second
stage is the model modifier ANN that introduces a shot-
of-reality. Two alternative modes for conjunction of these
stages are described in the following section.

IMPLEMENTATIONS OF THE MODEL MODIFIER
APPROACH

The two alternative implementations of the model
modifier approach (Marwah and Mahajan, 1999) are:
A. The Difference Method – This implementation is
represented schematically in Figure 14. The model
modifier ANN is trained to predict the difference between
the output of the physical ANN model and the
experimental data. The expectation is that, if the
difference is a simpler function than the target function,
fewer data points will be required to build an accurate
model, as compared to building the model from scratch.
B. The Source-Input Method – This method is
represented schematically in Figure 15. In this method,
the output of the physical ANN constitutes an extra input
to the model modifier ANN. Since the physical ANN
model is close to the target model, its output serving as
input to the model modifier simplifies the learning task of
the latter. This reduces the number of experimental data
points required for developing the model. For example,
in the degenerate case when the physical ANN is
identical to the target model, the learning problem of the
model modifier ANN is reduced to auto-association.

APPLICATION OF THE MODEL MODIFIER
APPROACH TO THE ESS.

The physical ANN model was developed from a partly
empirical, partly analytical model of the ESS. This model
is represented in Figure 16. Stage-I is an empirical stage
that computes the open-circuit voltage (Voc) and the
internal resistance (Rint) of the battery from the SOC, by
means of statistical regression models (described
subsequently). These variables, along with the vehicle’s

power requirement constitute the inputs to Stage-II,
which computes the bus voltage (V) and current (I). The
empirical correlations of Stage-I were developed from a
statistical regression analysis of data collected from tests
performed on a lead-acid battery whereby the battery
was charged/discharged at a uniform rate. The source
data for these regression models is presented in Table I.
The empirical correlations of Stage-I are as follows:

A. SOC-Voc correlation -
Voc = 11.69531 + 1.520591×(SOC) −
0.409091×(SOC)2 + 0.073815×(SOC)3

B. SOC-Rint (charge) correlation [piecewise
regression model] -
1. Rint (charge) | SOC ∈ (0, 0.6)

Rint = 0.031544 − 0.018697×(SOC) +
0.033902×(SOC)2 + 0.02702×(SOC)3 −
0.117424×(SOC)4

2. Rint (charge) | SOC ∈ (0.6, 1)
Rint = 1.3347 − 7.388749×(SOC) +
15.45125×(SOC)2 − 14.225×(SOC)3 +
4.875×(SOC)4

C. SOC-Rint (discharge) correlation -
Rint = 0.048467 − 0.093393×(SOC) +
0.057976×(SOC)2

The analytical correlations of Stage-II, which result from
elementary circuit law analysis, are -

Training data for the physical ANN model were
generated by simulation using this two-stage physical
model. The experimental data comprised a pool of
29,424 points representing a single drive cycle
simulation.

RESULTS

Table II shows the results of applying the model modifier
approach. The results are represented graphically in
Figure 17. The physical ANN model, by itself, had an
accuracy of nearly 84%. The model modifier ANN
improved the performance considerably. Even a tiny
shot of reality consisting of only 6 points improved the
accuracy by over 10% (R2-error). Further, as observed in
Figure 17, the improvement in performance saturated at
a shot-of-reality comprising 20 data points. To develop a
conventional ANN model of comparable accuracy, 4047
experimental data points were required.

RESULTS AND CONCLUSION

We have demonstrated that the ESS of an HEV can be
adequately modeled by an artificial neural network. We
have also demonstrated the effectiveness of the Smart-

int

int

int

2
4

IRVV

R
PRVV

I

oc

rococ

−=

−−
=

Select technique for designing the training data for an
ANN. The performance of the best ANN trained by
random sampling of data was:

� Mean Squared Error: 39.52
� R-Squared Error: 0.9850

By application of the Smart-Select technique for
selection of training data, the performance was improved
to:

� Mean Squared Error: 5.78
� R-Squared Error: 0.9978

The ANN’s performance was better than that of the
original, circuit-law analysis based algorithm, which was:

� Mean Squared Error: 17.872
� R-Squared Error: 0.9653

Figure 18 shows the results screen of ADVISOR with the
ANN successfully incorporated. The topmost graph of
this figure shows the profiles of the required speed
versus the attained speed over the drive cycle. Time is
plotted on the X-axis. As the required speed is met
throughout the drive cycle, the two plots coincide. The
next graph shows the SOC history over the drive cycle.
The last two graphs show the vehicle’s power request
and the corresponding actual power achieved over the
drive cycle.

Further, we have demonstrated the effectiveness of the
model modifier approach. By applying this approach, a
saving of 96% was achieved in the amount of
experimental data required for training.

ACKNOWLEDGMENTS

We are grateful to the U.S. Department of Energy and
the National Energy Renewable Lab (NREL) for
sponsorship of this investigation. We are thankful to the
University of Colorado, under whose auspices this
research was carried out. The authors gratefully
acknowledge the contribution of Dr. Yuan Li, Matthew
Cuddy and David Rausen to this project.

REFERENCES

1. Bhatikar, S. R., Artificial Neural Network Base Energy
Storage System Modeling for Hybrid Electric Vehicles, MS
Thesis, University of Colorado at Boulder, 1999.

2. Haykin, S., Neural Networks: A Comprehensive
Foundation. New York, MacMillan College Publishing
Company, 1994.

3. Marwah, M., Mahajan, R. L., Building Neural Network
Equipment Models Using Model Modifier Techniques.
IEEE Trans. Semiconductor Mfg., Vol. 12, No. 3, (August),
pp. 377-381, 1999.

4. Marwah, M., Li Y., Mahajan, R. L., Integrated Neural
Network Modeling For Electronic Manufacturing. J.
Electronics Manufacturing, Vol. 6, No. 2 (June), pp. 79-91,
1996.

5. Marwah, M., Neural Network Modeling Techniques For
Electronics Manufacturing Processes. Masters’ Thesis.
University of Colorado at Boulder, 1993.

6. Smith, M., Neural Networks for Statistical Modeling. New
York. Van Nostrand Reinhold, 1993.

For more about HEVs and ADVISOR:
7. http://www.ccts.nrel.gov

DEFINITIONS, ACRONYMS, ABBREVIATIONS

ANN – Artificial Neural Network.

ADVISOR – Advanced Vehicle Simulator.

CUANN – Colorado University Artificial Neural Network.

DOE – Design of Experiments.

ESS – Energy Storage System.

HEV – Hybrid Electric Vehicle.

MSE – Mean Squared Error.

APPENDIX A.

Porting between CUANN and MATLAB .

For this project, the CU-ANN� was required to be ported into the MATLAB� environment of ADVISOR. The porting is
explained here with the help of a simple example. To port an ANN developed by the CUANN� software into the MATLAB�

environment, it is first required to define an ANN of identical structure in MATLAB�, with its Neural Network Toolbox. To
define a feed-forward neural network in MATLAB�, the Neural Network Toolbox provides the command newff. The
anatomy of this command is described with the following example -

net = newff([0 1; 0 1], [3, 2], {'logsig', 'logsig'});

In this example, the variable net is a two-layer, feed-forward neural network. That means there is one hidden layer, the
other layer being the output layer. The hidden layer has three neurons and there are two output neurons. The activation
function of both layers is a logistic sigmoid. Note that the range of each input variable is specified as [0 1], since the CU-
ANN� automatic pre-processor normalizes the input variables in that range.

The nest step is to load the weights of the ANN from the CU-ANN�. For this purpose, text files are created from the CU-
ANN� as follows:

• A text file for the bias weights of each layer.
• A text file for the interconnection weights of each layer.

According to the format of the weight files in the CU-ANN�, the weights are organized layer-wise, as matrices. The bias
weights of a layer and the weights of interconnections with its previous layer are organized as a matrix. The weights of an
individual neuron are organized in a row, with the first element in a row being its bias weight. The rows are arranged in the
order of the neurons. In the example cited, the weights of the hidden layer would be represented as follows –

Bias Input 1 Input 2 Input 3
Neuron 1 ··· ··· ··· ···
Neuron 2 ··· ··· ··· ···
Neuron 3 ··· ··· ··· ···

The text file for loading the bias weights of a layer would comprise the first column of its weight matrix in the CU-ANN
weight file. The text file for loading its interconnections with its previous layer would comprise the remaining columns. In
the example cited, the weight assignment would require four text files, two for each layer. The weight assignment in
MATLAB� would be as follows:

net.IW{1, 1}=weights_10;
net.b{1, 1}=weights_10b;
net.LW{2, 1}=weights_21;
net.b{2, 1}=weights_21b;

In the MATLAB� environment, the hidden layer connecting to the input layer is identified as net.IW{1, 1}. The weights of
any other layer are identified as net.LW{a, b} where a is the number of the layer and b is the number of the layer with
which it is interconnected. The numbering system starts with the first hidden layer in the feed-forward direction, which is
standard practice. The same notation has been used in this example to label the text files, with a trailing ‘b’ indicating that
the file contains bias weights. Now, the ANN is ready for prediction. The Neural Network Toolbox provides the command
sim for this purpose. The anatomy of this command is as follows:

a = sim(net, in)

Ranges of the
input variables,
in order.

Sizes of
the
layers, in
order.

Activation
functions
of the
layers, in
order.

network
variable

output:
vectors
in row
format

input:
vectors in
row format

Note that the input vectors are presented to the network in row format. Correspondingly, the outputs are also in row
format. The inputs require to be normalized in the range [0, 1]. The normalization is performed as follows:

where the superscript labels the input variable, and the maximum and minimum values refer to the training data. The CU-
ANN normalizes the output variables in the range [0.2, 0.8], so the output a has to be de-normalized as follows:

where, the superscript labels the output variable, and the maximum and minimum values refer to the training data.

ii

ii
i

inin
ininnormalizedin

minmax

min)(
−

−=

)(
2.08.0
2.0)(minmax

jj
j

j aaanormalizeddea −×
−
−=−

Figure 1: Typical HEV subsystems.

Figure 2: The artificial neuron.

Figure 4: The sigmoid activation function.

x

σ(x)

Sigmoid Activation Function

Σ(WijXi)

�

W0j

F[Σ(WijXi) - W0j]

X2

W1j

Xi

X1

W2j

Wij

F

0

0.2

0.4

0.6

0.8

1

-15 -10 -5 0 5 10 15

Figure 3: An artificial neural network.

uj=Σ

F(uj)

u2=Σ

F(u2)

u1=Σ

F(u1)

B1

B2

Bj

W11

W12

W1j

W21

W22

W2j

Wi1

Wi2

Wij

i=1,2,..m

x1

x2

xi

y1

y2

yk

j=1,2,..n k=1,2,..p

Wjk

Bk

Output Layer
k

Hidden Layer
j

Input Layer

Figure 7: A schematic of the ESS.

Power
Requested

SOC

V

I

Power = VI

ESS

Figure 8: ABC-150 experimental test rig.

Figure 11: Uneven distribution of data vis-à-vis current.

Figure 12: Even distribution of training data vis-à-vis current with Smart-Select.

0
500

1000
1500
2000
2500
3000

-200 -150 -100 -50 0 50 100 150 More

0
50

100
150
200
250
300
350

-150 -100 -50 0 50 100 150 More

Current (Bins)

Current (Bins)

Frequency

Frequency

Figure 14: The ‘difference’ implementation of the model modifier approach.

Physical
Model

Model
Modifier

Physical ANN Model

“Shot of Reality”

Inputs
Output

Difference

+
Output

Input

Figure 15: The ‘output-as-input’ implementation of the model modifier approach.

Physical
Model

Model
Modifier

Physical ANN Model

“Shot of Reality”

Inputs

Inputs

Output

Output

Figure 16: Physical model for the model modifier approach as applied to the ESS.

Stage - II

Analytical Model

Stage - I

Empirical ModelSOC
Voc

Rint

Pr

V

I

Input Variable

Output Variable

Intermediate Output Variable

Figure 5: Graphic user interface for ADVISOR.

Figure 6: SIMULINK implementation of a series HEV in ADVISOR.

Figure 9: ANN voltage prediction (validation).

Figure 9: ANN Validation (Voltage)

8.00

10.00

12.00

14.00

16.00

18.00

8.00 10.00 12.00 14.00 16.00 18.00

Figure 13: ANN Validation (Current).

-200

-150

-100

-50

0

50

100

150

-200 -150 -100 -50 0 50 100 150

Figure 10: ANN Validation (Current).

-200

-150

-100

-50

0

50

100

150

-200 -150 -100 -50 0 50 100 150

Figure 17: Results of application of the model modifier approach to the ESS.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250 300 350 400 450

Size of shot-of-reality

MSE

Figure 18: Successful integration of ANN in advisor.

Table I: Source data for empirical part of the physical ESS model.

RintSOC Voc

Charge Discharge
0 11.70 0.0316 0.0407

0.1 11.85 0.0298 0.0370
0.2 11.96 0.0295 0.0338
0.3 12.11 0.0287 0.0269
0.4 12.26 0.028 0.0193
0.5 12.37 0.0269 0.0151
0.6 12.48 0.0231 0.0131
0.7 12.59 0.025 0.0123
0.8 12.67 0.0261 0.0117
0.9 12.78 0.0288 0.0118
1 12.89 0.0472 0.0122

Table II: Results of the model modifier approach as applied to the ESS.

Table II: Model Modifier Approach

Shot of
Reality (%)

MSE R-squared
Error (%)

0 0.04973 0.837555
10 0.01911 0.979956
6.6 0.02072 0.97559
5 0.01905 0.979369
4 0.01992 0.978514
1 0.02100 0.976343
0.5 0.02104 0.976997
0.25 0.02856 0.953965
0.125 0.02768 0.956616

